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1 Introduction

The richness of string theory also presents us with a huge vacuum degeneracy problem. In

lack of a dynamical principle to select a unique vacuum, there are two broad approaches

one typically takes. In a bottom-up approach, one aims to construct models which realize

as many known properties of our universe as possible. The rationale is that the criteria for

a “realistic” solution may significantly reduce the space of vacua, and thus one can zero-in

to a promising subset which hopefully points to the vacuum that describes our universe.

Alternatively, one can quantify the “likelihood” of our universe by sampling the statistics

of a vast number of vacua without imposing the prior that such vacua resemble the one in

which we live. This latter approach is what underlines the idea of a string landscape, and

has often been invoked to address the cosmological constant problem in string theory.

In contrast, the bottom-up approach has mainly been focussed on particle physics

aspects without much reference to the cosmological constant. This is most apparent in

local D-brane (and F-theory) model building where the requirement of having the low

energy spectrum and interactions of the Standard Model or Grand Unified Theories puts

non-trivial restrictions on local properties of the compactification, such as the types of

singularities supported in the internal space. These bottom-up constraints are powerful in

that they hold for a large class of models without having to fully specify the compactification

details. Of course, they are only necessary conditions, as global constraints such as moduli

stabilization and flux quantization can only be fully imposed with a specification of UV
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completion. Nevertheless, they serve as a useful guide in the search for realistic vacua

before a complete model is explicitly constructed.

Given the cosmological constant problem is a question that arises only in the context

of quantum gravity, it should play an equally (if not more) important role in the selection

of string vacua. A natural question is whether there are analogous bottom-up constraints

on the underlying compactification in order for the resulting string theory solutions to have

positive 4D energy density.1 Naively, the answer is no since the cosmological constant is

defined only after all moduli are stabilized and so details of compactifications are needed

before this question can be addressed. As we shall see, however, under some assumptions

which will be elaborated further, one can obtain a set of constraints on the internal manifold

valid for a large class of models without specifying the compactification details. Our results

thus suggest a different strategy to search for de Sitter solutions, allowing us to focus on

promising regions of the landscape instead of constructing them in a model by model basis.

Our investigation is guided by various no-go theorems, some appeared in the recent

literature [1–5] and some we proved along the way. We center our discussions on Type

II string theories and their effective supergravity action since moduli stabilization is more

developed in the Type II duality frames. In particular, it is well known by now that

classical ingredients such as background fluxes have the effect of fixing moduli [6–10] (see

e.g. [11–15] for reviews). Although non-perturbative effects are often invoked in scenarios

of moduli stabilization (e.g., in the Type IIB context of [16]), the full moduli dependence

of such effects is extremely difficult to determine explicitly. Therefore, much of the work

on the subject amounts to demonstrating (by zero mode counting) that certain instanton

effects crucial for moduli stabilization are non-vanishing, rather than providing an explicit

computation of their magnitude and moduli dependence.

For ease of making our statements precise, we thus focus on finding de Sitter solutions

with only classical objects such as fluxes, orientifold planes, and curvature along the lines

of [1, 4, 5, 17, 18], since their contributions to the 4D potential are explicitly computable.

In the “minimalist” spirit of [5], we do not consider introducing D-branes or orbifolding the

internal manifold even though these ingredients also lead to a computable potential. This

is because their presence also implies new moduli such as those arising from open strings

and twisted sectors. In [1, 17] it has been argued that KK monopoles and NS5 branes lead

to contributions in the 4D effective potential that can enhance the existence of de Sitter

critical points. However, since our ultimate goal is to construct de Sitter solutions from a

10D point of view we refrain from introducing these objects since it is far from clear how

the backreaction of such objects can be taken into account as to have a reliable 4D de Sitter

solution. Of course there are still backreaction issues when one restricts to orientifolds, and

admittedly we have only been able to find solutions in the smeared limit. It is nonetheless

more likely that for configurations with just O-planes the backreaction can be computed

and one would be able to tell whether the de Sitter solution still exists.

1A conventional wisdom is to search for realistic vacua that preserve supersymmetry at the compacti-

fication scale, and that supersymmetry is dynamically broken (e.g., due to strong dynamics in the hidden

sector) in the effective theory at lower energies. However, not all realistic features of the models (such as

masses and couplings) necessarily persist after supersymmetry breaking and vacuum uplifting.
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Within the framework of this “minimalist” approach there appeared some recent works

on dS solutions in IIA [4, 5].2 It is one of our aims to improve on these works since the

proposed stable dS solution in [5] turns out to not solve the 10D equations of motion

whereas the candidate example in [4] is perturbatively unstable. Furthermore, because

of the complexity of the solution in [4] it is hard to check that it really solves the 10D

equations of motion.3

We investigate the effective potential for such Type II compactifications and search for

de Sitter critical points in models with orientifold sources and fluxes on a compact internal

manifold. Our treatments for Type IIA and IIB theories are completely parallel except for

some obvious changes as one goes between these duality frames. We derive several no-go

conditions for the existence of de Sitter solutions, and explore some explicit models that

circumvent them. In the specific case of SU(3)-structure manifolds in IIA with smeared

O6 planes, we find de Sitter solutions that solve the 10D equations of motion when certain

conditions on the torsion classes are satisfied, even though the stability of such de Sitter

solutions needs to be checked once specific models are found. On the other hand, we verify

that these torsion conditions are not satisfied for the coset geometries. These examples

illustrate the utility and power of the no-go constraints. It remains an open problem

whether there exist SU(3)-manifolds that satisfy the conditions on the torsion classes for

these simple de Sitter solutions to be realized.

As an interesting aside we find that our analysis allows us to construct new non-

supersymmetric AdS solutions for some coset geometries.

2 The coupling and volume dependence of Vtree

The number of scalar fields appearing in an effective 4D theory after compactification

depends on the specifications of the compactification under consideration. Nonetheless

there are 2 universal moduli that always appear, these are the string coupling φ and the

internal volume V. The appearance in the effective potential at tree-level is also universal,

see for instance [1, 15]. In the following we re-derive these potential terms from type II

supergravity since we will need these to derive our nogo theorems in the next section.

The metric Ansatz, in 10 dimensional string frame, that describes an unwarped reduc-

tion to 3 + 1 dimensions is

ds2
10 = τ−2ds2

4 + ρds2
6 , (2.1)

where we have to take

τ ≡ ρ3/2e−φ , (2.2)

in order to find 4D Einstein frame.4

The NSNS fluxes are the H field strength and the metric flux. By metric flux we mean

that the internal manifold has non-zero Ricci scalar. The energy contributions are

VR = URρ−1τ−2 , VH = UHρ−3τ−2 , (2.3)

2For literature on non-classical dS solutions in IIA we refer to [19–21].
3In the sourceless case, that admits no dS solutions, there exist arguments showing that the dimensional

reduction is consistent [22].
4In our conventions, the 10D string frame action is

R p

| g |e−2φ(R + 4(∂φ)2 + . . .).
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where UH denotes the integrated flux, UH =
∫

6 H2, and UR denotes minus the integrated

curvature, UR = −
∫

6 R6 . We will use similar notation in the following that we consider

self-explanatory. For the RR q-form fluxes we find

V RR
q = Uqτ

−4ρ3−q . (2.4)

For Dp and Op sources, with tension Tp, that fill the lower 4D spacetime and wrap a

(p − 3)-dimensional submanifold Σ we find

VDp/Op = TpV ol(Σ)τ−3ρ
p−6

2 . (2.5)

This term is negative for O-planes and positive for D-branes.

From the above discussion we find that the form of the string effective potential in

D = 4 at tree-level can be written as

Vtree = a(ϕ)τ−2 − b(ϕ)τ−3 + c(ϕ)τ−4 , (2.6)

where ϕ denotes all scalars different from τ (including ρ).

In the case the internal space is unwarped and compact one easily verifies that the

effective potential approach is correct since the ∂ρV = 0 = ∂τV equations correspond to

specific linear combinations of the 10D dilaton equation of motion and the trace over the

internal indices of the 10D Einstein equations as shown in appendix B.5

3 No-go theorems and minimal ingredients

In this section we consider all orientifold compactifications and focus on the form of the tree-

level scalar potential. Since we require the O-planes to fill 4D space and wrap some internal

submanifold, the Op-planes we consider have p ≥ 3. If we furthermore insist that the O-

planes do not break supersymmetry explicitly so that the resulting dS solutions correspond

to supersymmetry breaking states in a supersymmetric theory, their dimensionality should

differ by a multiple of 4. Finally, the O9-plane tadpoles are canceled by D9-branes which

introduce open string moduli. With the minimalist approach we pursue here, we shall not

consider this possibility though we expect our considerations can be applied to the O9 cases

as well. Therefore, we end up with the following options in IIA: O4, O6, O8 and O4/O8

and in IIB: O3, O5, O7 and O3/O7.

The minimal ingredients. As originally discussed in [17], searching for de Sitter critical

points with small vacuum energy of the potential corresponds to finding critical points of

the quantity 4ac/b2 ≈ 1 as a function of the other moduli ϕ:

∂ϕ
4ac

b2
= 0 , &

4ac

b2
≈ 1 . (3.1)

5When warping is present one needs to be more careful in reducing the action. For instance, there exist

models that allow de Sitter solutions without sources [23] (but with non-compact internal space), although

the ρ, τ appearance in the naively reduced scalar potential would not allow for it.
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With this simple result we can easily construct no-go conditions for dS solutions by in-

vestigating when 4ac/b2 allows for critical points. By focussing on just the ρ-dependence

of 4ac/b2 we can give conditions that hold independently of the geometry and other in-

gredients specific to a model. In particular we will list the minimal ingredients that are

necessary to have a critical point of 4ac/b2 for type IIA/B supergravity with sources.

For the single type Op reductions we have

4ac

b2
=

∑

q Uqρ
6−p−q

V ol2ΣT 2
p

(

URρ2 + UH

)

. (3.2)

The demand that 4ac/b2 is stabilised close to 1 shows that

URρ2 + UH > 0. (3.3)

From ∂ρ(4ac/b2) = 0 we deduce that

2URρ7−p
∑

q

Uqρ
−q = −

(

URρ2 + UH

)

∑

q

(6 − p − q)Uqρ
5−p−q. (3.4)

This equation combined with (3.3) and the fact that UH and Uq are all positive implies that

for p > 4 we need to have UR > 0 and hence we need negatively curved internal spaces. In

general we deduce the following conditions from (3.4):

• O3 planes: When UR = 0 we need at least UH , F1 and F5. When UR 6= 0 more

possibilities arise.

• O4 planes: When UR = 0 we need at least UH , U0 and Uq with q > 2. When UR 6= 0

more possibilities arise.

• O5 planes: We minimally need positive UR, U1 and some other field strength

turned on.

• O6 planes: The minimal conditions which were derived previously in [5] and are

positive UR, U0 and some Uq with q > 2 (or positive UR, U0, UH with Uq with q > 0.).

• O7 & O8 planes: We cannot stabilise 4ac/b2.

For the O4/O8 and O7/O3 setup the expressions for 4ac
b2 are more lengthy but a close

look at the expressions shows that:

• O4/O8: One needs at least UR and U2, or U0 and UH .

• O3/O7: One needs at least UR and U3, or U1 and UH .

The above derivations use the dependence of the effective potential on ρ and τ which

is equivalent to the 10D dilaton equation and traced internal Einstein equation in the

smeared limit, as explained in appendix B. The traced external Einstein equation just fixes

the value of the 4D cosmological constant, and contains no new information. But in some

cases one is able to use some extra equation to find an extra relation. This was done in

– 5 –
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GKP [10], where the F5 equation of motion (or Bianchi identity) was used in the traced

external Einstein equations to find extra nogo conditions. Let us briefly repeat the outcome

of that result and furthermore drop the assumptions of [10] that the 4D space is Minkowski

and that the internal space is a warped Calabi-Yau.

The Ansatz for F5 in [10] is

F5 = (1 + ⋆)dα ∧ ǫ4 , (3.5)

where α is some function on the internal manifold (that is even under the O3 target space

involution in case there is an O3 source). The warped metric is given by

ds2
10 = τ−2e2A(y)g4

µνdxµdxν + ρe−2A(y)g6
ijdyidyj , (3.6)

Repeating the same steps as in [10] for O3 and O7 sources, one finds from the traced

external Einstein equation and the F5 Bianchi identity the following condition

�(e4A − α) = R4 +
e2A

6Imτ
|iG3 − ⋆6G3|2 + e−6A

∣

∣∂
(

e4A − α
)∣

∣

2
. (3.7)

If we integrate the equation on both sides over the internal manifold then we clearly find

that R4 > 0 is impossible since the other 2 terms on the right hand are manifestly non-

negative. This excludes any dS vacuum given the assumption for the F5 field strength (11).

Let us therefore examine this assumption (3.5). Clearly for Calabi Yau spaces this

assumption is necessary since there exist no non-trivial 1- or 5-cycles. But here we drop

the Calabi-Yau assumption, such that one can in principle have

F5 = (1 + ⋆)A ∧ ǫ4 , (3.8)

where A is some cohomoligical non-trivial one-form. In this case one cannot derive equa-

tion (3.7) to exclude dS solutions. However for O3 planes (3.8) is excluded since a non-

trivial one-form would be projected out by the O3 involution. Hence the GKP argument

also applies here and demonstrates that the minimal ingredients derived above are not

sufficient since there do not exist tree-level dS solutions. This leaves O3/O7 models as the

only possibility6 (we already excluded O7).

“Pure flux” models. In this subsection we check whether the minimal ingredients can

be satisfied in the simplified situation that cycles thread by the field strengths and the cycles

wrapped by the sources are closed but non-exact.

Consider a field strength Fp = dCp−1. When we truncate all 4D vectors and 4D

tensors, the dimensional reduction is

Ĉq = χiΛ
i
q , F̂p = dĈp−1 + Σp , (3.9)

where Σp are non-trivial elements of the p-th cohomology class ΩP (M, IR) of the internal

manifold M . The χi are 4D scalar fields (the gauge potential moduli) and the Λi are a set

6The combined O3 and O7 involution does not exclude (3.8) when the one-form A points in the direction

of the O7 plane.
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of p-forms on M , chosen such that the reduction corresponds to a consistent truncation.

We define “pure flux” solutions as solutions for which we truncate all the gauge potential

moduli: χi = 0.

One needs to take into account the O-plane involutions to understand what kind of

fluxes are allowed by the O-planes. An O-plane action is a combination of different involu-

tions. There is always a target space involution σ and the world-sheet parity operation Ω,

exchanging left and right movers. The fixed point set of the geometric involution σ defines

the position of the O- plane. In some case one needs to add the involution (−1)FL , with

FL the left-moving fermion number. We have the following transformation properties:

Ω : +
{

φ, g,C1, C2

}

, −
{

C0, B2, C3, C4

}

, (3.10)

(−1)FL : +
{

φ, g,B2

}

, −
{

C0, C1, C2, C3, C4

}

. (3.11)

It can be shown that, in order to divide out by symmetries of the string theory, the O-planes

come with the following actions:

(−)FLΩσ : O3, O4, O6, O7, O8 ,

Ωσ : O5, O9 . (3.12)

Hence to understand which degrees of freedom and which fluxes are allowed by the O-plane

one multiplies the worldsheet involutions (3.12) for a certain field C (or flux F ) and one

considers how many legs of C (or flux F ) are in the O-plane direction and how many are

transversal. The latter is necessary to check the parity of the field, or flux, under σ. The

total product should be even. Let us investigate this for the O4, O5 and O6 cases.

• The O4 model

The Bianchi identity

dF4 = H ∧ F2 + δ(O4) , (3.13)

turns out problematic: F2 has to thread a cycle with one leg in the O4 and another

leg outside. If this flux is wedged with H we have a 5-form with at least one leg

inside of the O4. This 5-form is hence of a different type then the 5-form distribution

δ(O4), which has all legs outside of the O4 plane.

• The O5 model

The Bianchi identities for F3 and F5

dF5 = H ∧ F3 , dF3 = F1 ∧ H + δ(O5) , (3.14)

where δ(O5) is a form distribution with 4 legs in the space transversal to the O5

plane. To evaluate these constraints we have to keep in mind that F1,H and F5 are

odd under the O5 worldsheet operation involution and F3 is even. Hence the F1,H

fluxes point in the transversal directions and the F5 flux should have an odd number

of legs along the transversal directions, whereas the F3 should have an even number.

– 7 –
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• The O6 model

The F2 Bianchi identity

dF2 = mH + δ(O6) . (3.15)

demonstrates that H is needed to cancel the tadpole. Since H needs to thread a

cycle transversal to the O6 it is the same form type as the form distribution of the

O6 source, such that it can indeed cancel the tadpole. This is an attractive feature

of these models.

Let us consider some examples. In case the internal space is a direct product of two

3-dimensional spaces M3 there is a straightforward way to define the O6 target space

involution σ:

σ : (y1, y2, y3, ȳ1, ȳ2, ȳ3) ↔ (ȳ1, ȳ2, ȳ3, y1, y2, y3) (3.16)

where the y and ȳ represent coordinates on the 3D spaces. Then there is one O6 plane at

the three-cycle spanned by the 3-surface, yi = ȳi. Of course, there are other ways to define

O6 planes, but this one is exceptionally easy.

In reference [5] some examples were studied where M3 are all 3D unimodular group

manifolds and where M3 is the Weeks manifold (a compactification of the hyperboloid

SO(3, 1)/SO(3)). In the group manifold case it turned out that the other metric moduli,

typical to group manifolds, have a runaway behavior in the 4ac/b2 expression, excluding

any dS solutions. The Weeks manifold on the other hand has no moduli apart from ρ

and τ . If we insist on not turning on massive shape moduli (that could be runaway) the

possible fluxes are F0, H and F6 . When all these are turned on we have (ignoring all

numerical factors)
4ac

b2
∝ ρ2 + ρ−2 + ρ0 + ρ−6 (3.17)

and this shows that a dS can be found if one can tune the numerical factors, as turns out

to be the case [5]. However this model fails to be a 10D solution since the F4 equation of

motion is not satisfied when F6 6= 0. If we put F6 = 0 we loose the dS solution, since

4ac

b2
∝ ρ2 + ρ0 . (3.18)

A similar problem seems present in the model of [17] where there is also a non-zero F6 flux.

It turns out that this happens more generically: one can find models for which one can

stabilise the 4ac/b2 quantity, but if one then insists on satisfying all the 10D form equations

of motion one finds exactly the terms needed for a solution to be forbidden. We illustrate

this with one more example that captures the essentials. For that we take M3 = H2 × S1,

where H2 is the compact 2D hyperboloid. The only modulus it has is the breathing mode.

The metric Ansatz then is

ds2
10 = τ−2ds2

4 + ρ

(

1

φ
dH

2 + φ2dy2 +
1

φ
dH̄

2 + φ2dȳ2

)

. (3.19)

– 8 –
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So, there are 3 scalars, τ, ρ and φ, where the latter measures the relative size of the

hyperboloid and the circle. The cycles that can be thread with fluxes, taking into account

the parity of the O6 are:

H3 : ǫ2 ∧ dy − ǭ2 ∧ dȳ , (3.20)

F2 : ǫ2 − ǭ2 , dy ∧ dȳ , (3.21)

F4 : ǫ2 ∧ ǭ2 , (ǫ2 − ǭ2) ∧ dy ∧ dȳ , (3.22)

where ǫ2 is the volume element on H2. However upon using the 10D form equations one

finds that the two F2-fluxes need to vanish. The F4 fluxes are not constrained and the

H-flux is inversely proportional to the Romans mass F0. If we ignore all numerical factors,

we obtain the following expression

4ac

b2
∝ φρ2 + (φ5 + φ−1)ρ−2 + (φ4 + φ−2)ρ−4 . (3.23)

It is not possible to stabilise ρ and φ at the same time. To see this clearly we make the

following redefinition φ = ρ−2φ′ and find

4ac

b2
∝ φ′ + (φ′5ρ−10 + φ′−1ρ2)ρ−2 + (φ′4ρ−8 + φ′−2ρ4)ρ−4 . (3.24)

such that all powers in ρ are negative. One can readily check that when both F2 fluxes are

turned on, this problem disappears. So, it is really the information contained in the 10D

form equations that spoil the putative dS solution.

4 O6 models on SU(3)-structure manifolds

In this section we reverse our strategy. Instead of investigating the scalar potential coming

from a specific internal manifold with fluxes and then imposing the tadpole conditions, we

consider a whole class of internal manifolds with an Ansatz for the fluxes that solves the

10D form equations from the outset.7

Since fluxes backreact the internal spaces to generalised Calabi-Yau spaces we take

as a starting point a general class of SU(3)-structure manifolds defined by two torsion

classes W1 and W2. Consider the canonical real two-form J and the complex three-form

Ω = ΩR + iΩI built out of the covariantly constant spinor on the internal manifold. We

have the following characteristic equations

dJ = −3i

2
W1ΩR , (4.1)

dΩ = W1J ∧ J + W2 ∧ J , (4.2)

where we assume that W1 is an imaginary zero-form and W2 is an imaginary two-form.

7We stress that it is not necessary to investigate the 10D equations as long as one performs a consistent

dimensional reduction, which we believe can be done for the models under consideration. However, we have

found it easier to analyse the 10D equations instead of performing the reduction.

– 9 –
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These kind of SU(3)-structure spaces have been shown to allow for supersymmetric

AdS4 solutions [3, 24, 25] with and without sources. Below we generalise the AdS Ansatz

of [3, 24, 25] and check whether it can give rise to dS4 solutions. For the readers’ convenience

we added appendix C that contains our IIA conventions and appendix D that contains

useful formulae involving SU(3)-structures.

Our 10D Ansatz for the forms is

F2 = e−3φ/4f1J + ie−3φ/4f2W2 , (4.3)

H = eφ/2hΩR , F0 = e−5φ/4m , (4.4)

F4 = e−φ/4g1ǫ4 + e−φ/4g2J ∧ J . (4.5)

Concerning the O6 plane source we assume the same as in [3] that it is smeared and that

it wraps the calibrated submanifold dual to ΩR such that the Bianchi identity reads

dF2 = mH + µΩR , (4.6)

where in this convention positive µ implies net orientifold charge. The 10D Bianchi and

form equations are solved if the flux parameters obey

g1h = −3ig2W1 , (4.7)

ihW1 = 2f1g2 − g1g2 +
1

2
mf1 , (4.8)

h = 2f2g2 − mf2 , (4.9)

f2
|W2|2

8
= mh +

3i

2
f1W1 + e3φ/4µ , (4.10)

and the following form equation is satisfied8

dW2 ∝ ΩR . (4.11)

From here on we just use the Bianchi identity (4.10) to determine the sign and the mag-

nitude of µ. Of course, in an explicit model, the magnitude of the net orientifold charge

cannot be chosen at will, since (i) the orientifold plane charges, just like D-brane charges,

are quantized, and (ii) orientifold planes cannot be stacked like D-branes and their number

is fixed through the number of Z2 involutions on the internal manifold.

For specific values of the flux parameters f1, f2, h, g1, g2 one obtains the supersymmetric

AdS solutions of [3, 24]. These solutions have

f1 =
i

4
W1 , f2 = 1 , h = −2m

5
, (4.12)

g1 = 9f1 , g2 =
3m

10
. (4.13)

However, these ingredients are also sufficient to evade the usual dS no-go theorems. It is

therefore interesting to understand whether there are other non-supersymmetric solutions

in the 5-dimensional parameter-space (f1, f2, h, g1, g2).

8One can prove that this assumption fixes the constant of proportionality to become dW2 =

−(i|W2|
2/8) ΩR.
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The most constraining 10D equation is the internal Einstein equation (C.6). For the

manifolds under consideration there exist explicit expressions for the Ricci tensor in terms

of the forms J,Ω,W2 [26, 27]:

Rmn =−3i

4
(ΩR) ps

n ∂[p(W2)sm]−
1

4
W1(W2)mrJ

r
n − 1

2
(W2)mq(W2)

q
n +

5

4
gmn|W1|2 . (4.14)

This clean expression implies we can verify in all generality the 10D equations of motion.

The main clue to solve the 10D Einstein equations is the understanding of which tensors

on both sides of the equation are independent. Clearly the traceless parts have to be equal.

The problem divides into two cases

case 1 : (W 2
2 )ij 6=

W 2
2

6
gij + iα(JW2)ij , (4.15)

case 2 : (W 2
2 )ij =

W 2
2

6
gij + iα(JW2)ij , (4.16)

with α some real number different from zero.9 Case 1 is the most general case and leads to

the most restrictions. In case 2 the Einstein equations enforces less restrictive conditions

and we will show that dS solutions are possible in this case.

The non-degenerate case. Let us first discuss case 1 and demonstrate that the only

solutions are the supersymmetric AdS solutions constructed in [3, 24, 25]. If we just focus

on the tensors different from gij in the internal Einstein equation we find two conditions

from equating the coefficients in front of the W 2
ij and (JW )ij tensors on both sides of the

Einstein equation:

f2 = ±1 , −1

4
W1 = if1f2 . (4.17)

Combined with the equations (4.7)–(4.10) we uniquely find the known supersymmetric AdS

solutions (4.12), (4.13). In fact, without analysing the Einstein equation, supersymmetry

would immediately lead to these values for the fluxes and susy would guarantee that the

Einstein and dilaton equations are solved. Since dS vacua are not supersymmetric there is

more work in order to check when there is a solution.10

The degenerate case with F4 = 0. Let us now consider case 2. The traceless part of

the Einstein equations now imposes just one condition

(−f2
2 + 1)α = −2f1f2 +

i

2
W1 . (4.18)

First we consider the simplified case where F4 = 0. From here on we leave h and m

free and solve all quantities in terms of these two flux numbers. Furthermore the ratio h/m

is important enough to deserve a separate name

β =
h

m
. (4.19)

9 In case 2 one can also verify that α 6= 0. To show this note that J and W commute as matrices and

therefore can be complex diagonalised at the same time. Using this as a starting point one finds that W 2

cannot be proportional to the metric when at the same time keeping JW traceless.
10 However, recently it has been shown that some non-susy vacua have the same integrability properties

as the susy vacua [28]. We did not pursue this possibility further.
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Then the equations (4.7)–(4.9) imply

f1 = 2βiW1 , f2 = −β , (4.20)

The F2 Bianchi identity (4.10) leads to

e3φ/4µ

βm2
= −1 − 1

m2

(

3|W1|2 +
1

8
|W2|2

)

. (4.21)

From this we observe that without source we cannot have a solution and that β > 0

corresponds to net D6 charge and β < 0 to net O6 charge. In case we are interested in dS

solutions we therefore need β < 0.

The remaining equations to verify are the traced internal Einstein equation and the

dilaton equation, which are equivalent to the ∂τV = ∂ρV = 0 equations

∂ρV = 0 : − VR − 3VH + 3V0 + V2 = 0 , (4.22)

∂τV = 0 : − 2VR − 2VH − 4V0 − 4V2 − 3VO6/D6 = 0 , (4.23)

where

VR = −15

2
|W1|2 +

1

4
|W2|2 , V0 =

m2

2
, VH = 2h2 , (4.24)

V2 =
1

4
(6f2

1 + f2
2 |W2|2) , VO6 = −4µe3φ/4 . (4.25)

In order to verify that we have a solution we must solve (4.22) and (4.23) for |W1|2 and

|W2|2 and check when the expressions are positive. The solutions are

|W1|2 =
−m2

81β

(

5 + 16β − 20β2 − 28β3
)

, (4.26)

|W2|2 =
−2m2

27β (β + 1)

(

25 + 24β − 56β2 + 192β3 + 112β4
)

. (4.27)

Clearly both expressions are positive when β is negative and sufficiently close to zero. From

the Bianchi identity we know that this also implies a net orientifold charge. In order to

know what the sign of the 4D cosmological constant is one observes that equations (4.22)

and (4.23) imply (only when F4 = 0)

V =
2

3
(V0 − VH) =⇒ V > 0 : β2 <

1

4
. (4.28)

Hence a small negative β is nicely consistent with a de Sitter solution! To understand what

kind of solutions are possible we present some plots. In figure 1 we plot |W1|2 and |W2|2 as

functions of β. A solution exists when both expressions are positive. In figure 2 we plot V

and the two mass2 eigenvalues in the ρ and τ directions as functions of β. From the figures

we see that a value of β between roughly −2 and −1 gives rise to a non-supersymmetric

AdS vacuum that is stable in the ρ and τ directions. We also note that we have dS vacua

with a tachyonic direction for small negative values of β.
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Figure 1. |W1|2 and 10−2 × |W2|2 (dashed) as functions of β when F4 = 0.

-3 -2 -1 1 2 3

-10

-5

5

10

Figure 2. The two 10−1× mass2 eigenvalues and V (dashed) as functions of β when F4 = 0.

The degenerate case with F4 6= 0. In what follows it is useful to also define a

new fraction

γ ≡ g2

m
. (4.29)

We can solve f1, f2 and g2 in terms of β, γ,m and the torsion classes as follows

f2 =
β

2γ − 1
, g1 =

−3γiW1

β
, f1 =

β − 3γ2

β
1
2 + 2γ

iW1 . (4.30)

Then the F2 Bianchi identity (4.10) is given by

e3φ/4µ

β
= −m2 +

|W2|2
16γ − 8

−

(

3 − 9γ2

β2

)

1 + 4γ
|W1|2 . (4.31)

An interesting effect of non-zero γ is that the Bianchi identity can be satisfied with zero

source µ = 0. The contributions to the potential are now (VR, VO6, V0, V2 remain unaltered)

V4 = 6g2
2 , V6 =

1

2
g2
1 . (4.32)
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Figure 3. |W1|2 and 10−1 × |W2|2 (dashed) as functions of β for γ = 0.1.
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Figure 4. The two 10−1× mass2 eigenvalues and V (dashed) as functions of β for γ = 0.1.

Having established this we can repeat the same kind of analysis as above. One rewrites

the ∂ρV = ∂τV = 0 equations in terms of β, γ,m, |W1|2, |W2|2 and checks when there exists

solutions, i.e., when the solutions for |W1,2|2 in terms of (β, γ,m) are positive.11 Below

we present plots of |W1,2|2 in terms of β for γ = 0.1. From figure 3 and 4 we see that dS

solutions, stable in the ρ, τ -directions exist for β between about −0.207 and −0.190. Note

that while a critical dS is easy to achieve, there is just a tiny little window available for

a solution stable in the ρ, τ -directions. From figure 5 it can be seen that these solutions

have a net orientifold charge.

From figure 5 we can see that, if β is chosen near −0.13 the solution has a vanishing

O6/D6 charge. At this value of β both the mass matrix eigenvalues are positive as can be

seen from figure 4. So, we get AdS solutions with vanishing charge that are stable in the

ρ, τ -directions.

The scales. Note that in the previous we have absorbed ρ and τ in the various fluxes

such that it did not appear explicitly in the equations (4.24), (4.25) and (4.32). Note that

11It turns out that m2 just sets the overall scale and one can therefore just take m2 = 1. Then one is left

with β, γ.
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Figure 5. VO6 as a function of β for γ = 0.1.

we can therefore choose it at will by rescaling the various fluxes (and µ). This implies

that we can make the solution as weakly coupled as we want and choose the volume such

that we can neglect α′ corrections and perhaps still have a decoupling of KK modes [3].

However there is a danger since we also have to rescale µ, but, as we explained before,

the number of O-planes is not a free parameter. Furthermore, scaling of fluxes is also

potentially dangerous because of quantisation. So, it remains to be seen whether a given

explicit model fulfills the right conditions.

If we reinstate the dependence of ρ and τ in the equations we can plot the potential in

function of ρ and τ . This we have done in figure 6 for β = −0.2. We have chosen ρ and τ

such that the dS minimum derived above is at ρ = τ = 1. We can clearly see the minimum,

and in addition an inflexion point near (ρ, τ) = (1.08, 1.25) acting as a barrier against a

deeper drop in the potential towards the upper right in the picture. This is qualitatively the

same kind of behavour as in KKLT [16] and suggests a dS vacua non-perturbatively unstable

against tunneling to a lower energy. However, one needs to be very careful when drawing

these kinds of conclusions. The only critical point in figure 6 that we have actually proven

to be a solution to the 10D equations of motion is the minimum at (ρ, τ) = (1, 1). Any other

critical points generated by moving off in the (ρ, τ)-plane are likely not to be full solutions.

The coset geometries. So far we have not realised explicit geometries for these torsion

classes. In total we have 2 conditions on the torsion classes.

1. dW2 ∝ ΩR ,

2. W 2
ij = 1

6W 2
2 gij + iα(JW )ij ,

where the Einstein equations dictate that α is related to the fluxes as follows

α

iW1
=

(

2γ − 1

2 + 8γ

)

8(3γ2 − β2) + (2γ − 1)(1 + 4γ)

(2γ − 1)2 − β2
. (4.33)

We will now check these conditions for the coset geometries and the Iwasawa manifold

discussed in [3].12

12Another set of explicit SU(3)- structure manifolds appeared in [29]. These spaces have W1 = 0 and

W2 6= 0. We have verified that this does not allow the dS solutions we have considered.

– 15 –



J
H
E
P
0
9
(
2
0
0
9
)
1
1
4

0.90 0.95 1.00 1.05 1.10 1.15 1.20

1.0

1.2

1.4

1.6

1.8

2.0

Figure 6. V as a function of ρ and τ for β = −0.2 and γ = 0.1.

One finds that the only examples that can fulfill dW2 ∼ ΩR and the degeneracy

condition are Sp(2)/S(U(2) ×U(1)) and SU(3)/U(1) ×U(1). It turns out Sp(2)/S(U(2) ×
U(1)) is a special subcase of SU(3)/U(1) × U(1) when some moduli are fixed; so we only

discuss the coset SU(3)/U(1) × U(1). According to [3, 30] we have

J = −ae12 + be34 − ce56 (4.34)

Ω = d
((

e245 + e135 + e146 − e236
)

+ i
(

e235 + e136 + e246 − e145
))

, (4.35)

where the ei are the Cartan-Maurer forms. The metric is diagonal with respect to the

Cartan-Maurer forms and is given by

g =



















a

a

b

b

c

c



















. (4.36)

For convenience we introduce the notation g = (a, b, c). We furthermore have

W1 =
i

3

a + b + c√
abc

, (4.37)

W2 = − 2i

3
√

abc

(

a (2a − b − c) e12 + b (a − 2b + c) e34 + c (−a − b + 2c) e56
)

. (4.38)
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From these expressions we find

|W2|2 =
16

3abc

(

a2 + b2 + c2 − (ab + ac + bc)
)

, (4.39)

(W 2
2 )nm = − 4

9abc

(

a (2a − b − c)2 , b (2b − a − c)2 , c (2c − a − b)2
)

(4.40)

(JW2)mn =
2i

3
√

abc

(

a (2a − b − c) , b (2b − a − c) , c (2c − a − b)
)

. (4.41)

In general (JW2)mn and (W 2
2 )mn − 1

6gnmW 2
2 are not parallel to each other, but at, e.g.,

a = b we find

α =
2(c − a)

3a
√

c
(4.42)

So, we should look for solutions with this value for α and

|W1|2 =
(2a + c)2

9a2c
, |W2|2 =

16

3a2c
(a − c)2 , (4.43)

where a, c > 0.

We have been able to find such solutions corresponding to new, non-supersymmetric

AdS vacua. For instance, with γ = 0.1 we find two solutions, both stable in the ρ and τ

directions (we take m2 = 1):

a ≈ 1.355 , c ≈ 0.5889 , β ≈ −0.129 . (4.44)

This solution has net D-brane charge (as can be verified using the plots). The other solution

has net O6 charge

a ≈ 1.7625 , c ≈ 0.7718 , β ≈ 0.126 . (4.45)

Such non-supersymmetric AdS4 vacua will be studied in more detail in [31].

We have not been able to find any dS solutions for this coset, in agreement with the

results of [4].

The Iwasawa manifold. There is one extra example discussed [3] that can satisfy the

degeneracy condition and dW2 ∝ ΩR. This is the Iwasawa manifold. In Cartan-Maurer

basis the metric is given by

g =
(

1, 1, y2
)

. (4.46)

with y some fixed number. Furthermore

J = e12 + e34 − y2e56 , (4.47)

W2 = −4iy

3

(

e12 + e34 + 2y2e56
)

, (4.48)

W1 = −2iy

3
. (4.49)

From this we have

α =
4y

3
, |W1|2 =

4y2

9
, |W2|2 =

64y2

3
. (4.50)

We have not been able to find other vacuum solutions apart from the susy AdS ones. So

for the Nilmanifold it is possible to have the susy choice for the fluxes and, at the same

time, have the degeneracy in the tensors JW2 and W 2
2 .
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5 Discussion

In this paper we have investigated on general grounds the conditions for the existence of

classical de Sitter solutions in string theory. We also went further by analysing specific Type

IIA O6 constructions. The simplest models, in which the fluxes are closed and non-exact,

generically have moduli directions for which the potential has no stationary dS point (not

even an unstable one). However, using SU(3)-structure solutions as a testbed for models

that have different kinds of fluxes, we were able to find a simple set of conditions on the

torsion classes in order for specific de Sitter solutions to exist. We explicitly verified these

conditions for the coset geometries and found that these conditions could almost be satisfied

but not quite. This we take as an indication that our conditions, though non-trivial, are

not impossible to be realized. For the coset geometries that had the almost correct form

of the torsion classes we were able to find new non-supersymmetric AdS solutions.

Concerning stability we have only investigated the masses of the ρ and τ scalars. The

general moduli structure of these generalised Calabi Yau spaces is not understood and

can only be studied when there exist an explicit geometry realising our conditions on the

torsion classes. However for the new AdS solutions we have found in the SU(3)/U(1)×U(1)

coset construction, it should be possible to use the effective theory developed in [3] (for a

consistent subset of the degrees of freedom) to study the stability.

Once an explicit geometry for the dS solution satisfying our conditions is found, it

is important to study the charge (and flux) quantisation since the O6 charge depends on

the involutions present in the explicit geometry. While our analysis relies on the smearing

of the O-planes, they should be understood, in a fully microscopic construction of our dS

solutions, as a localized source whose singularity admits a stringy resolution. We consider

it as an important avenue for further research to understand the effect of the backreaction

of the sources defined in this microscopic manner.

While SUSY AdS can be argued to be quite generic, dS solutions to the equations of

motion require fluke alignment of various contributions to the internal Einstein equations.

It therefore seems likely that dS solutions should be regarded as accidental from a landscape

point of view. If one, furthermore, requires perturbative stability in all directions, it might

become exceedingly difficult to find actual examples (see e.g. [32]). While our analysis has

been purely perturbative, there is no reason to expect that the difficulties would go away

in a non-perturbative setting. Unfortunately, the presently available methods do not allow

for a detailed analysis of the non-perturbative case.

Given a critical point there is really no reason to expect a minimum along a particular

direction in moduli space. The critical point might as well be a maximum or an inflexion

point, and one might argue that the chances for a given critical point to be a minimum in

one direction is only around 1/2. If the dimensionality of the moduli space is N , then the

fraction of critical dS points that actually are minima is down by a factor 2−N . With N of

the order of a few hundred, this reduction with respect to the total number of critical dS

points in the landscape can easily be of the same order, or even exceed, the expected 10−120

from the smallness of the observed cosmological constant. One can therefore argue that the

existence of a perturbatively stable dS vacua, is at least as severe a finetuning as the size of
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the cosmological constant itself. It is in fact far from obvious that there are any candidate

vacua left in the landscape at all. Hence, it is reasonable to investigate whether perturba-

tively unstable dS critical points can work from a phenomenological point of view [33].

Finally we like to mention some interesting directions for further research. One obvious

direction is to find explicit geometries that satisfy our conditions on the torsion classes

needed for our simple de Sitter solutions. If this can be done one can study the stability of

the solutions and the effect of the charge and flux quantisation. On the other hand, when

one considers explicit geometries one can also allow more general fluxes then the one we

considered (those given by Ω, J and W2) as was done for instance in [4]. In general this

is a hard problem, but can be done if one can systematically scan the scalar potential in

these IIA orientifold models (see e.g. [3, 34, 35]) for critical points. In some interesting

cases (like for twisted tori), the effective theory is N = 4 gauged supergravities [36, 37]

which facilitate a systematic scanning for de Sitter critical points [38, 39].
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A Form conventions and useful formulae

A p-form Ap in components is given by

Ap =
1

p!
Aµ1...µpdxµ1 ∧ . . . ∧ dxµp . (A.1)

Forms obey the following algebra

Ap ∧ Bq = (−)pqBq ∧ Ap . (A.2)

The exterior derivative is defined via

dAp =
1

p!
∂[νAµ1...µp]dxν ∧ dxµ1 ∧ . . . ∧ dxµp , (A.3)

and obeys the Leibniz rule

d(Ap ∧ Bq) = dAp ∧ Bq + (−)pAp ∧ dBq . (A.4)
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In D dimensions we define the epsilon symbol εµ1µ2...µp via

ε01...D−1 = 1 , (A.5)

and it is antisymmetric in all indices ε[µ1µ2...µp] = εµ1µ2...µp . From the epsilon symbol we

define the epsilon tensor εµ1µ2...µp via

ǫµ1µ2...µp =
√

|g|εµ1µ2...µp . (A.6)

Contractions of the epsilon tensor (and symbol) obey the following relations

ǫµ1µ2...µqµq+1...µD
ǫµ1µ2...µqνq+1...νD = (−)tq!(D − q)! δ

[νq+1

[µq+1
. . . δ

νD ]
µD ] , (A.7)

where t stands for the number of timelike dimensions of the D-dimensional space. The

Hodge operator ⋆ maps p-forms into (D− p)-forms. We define ⋆ on the coordinate p-forms

and by linearity it is defined on all forms

⋆ (dxµ1 ∧ . . . ∧ dxµp) =
1

(D − p)!
ǫ

µ1...µp
ν1...νD−p

dxν1 ∧ . . . ∧ dxνD−p . (A.8)

The ⋆ operation has the following properties

⋆ Ap ∧ Bp = ⋆Bp ∧ Ap =
1

p!
Aµ1...µpB

µ1...µp ⋆ 1 , (A.9)

⋆ ⋆ Ap = (−)p(D−p)+tAp . (A.10)

Useful identities are

dxµ1 ∧ . . . ∧ dxµD = (−)tεµ1...µDdx0 ∧ . . . ∧ dxD−1 , (A.11)

⋆1 =
√

|g|dx0 ∧ . . . ∧ dxD−1 . (A.12)

As an application of these conventions one has

⋆10 (Ap ∧ Bq) = (−1)p(6−q) ⋆4 Ap ∧ ⋆6Bq , (A.13)

where A is a form in four-dimensional spacetime and Bq is a form on the internal six-

dimensional space.

For a metric of the form

ds2
10 = τ−2e2αA(y)g4

µνdxµdxν + ρe2βA(y)g6
ijdyidyj , (A.14)

The Ricci tensor is (assuming constant τ and ρ)

R10
µν = Rµν(g4) − 4(α2 + αβ)e2(α−β)A(y)(∂A)2τ−2ρ−1g4

µν ,

−αe2(α−β)Aτ−2ρ−1g4
µν�A , (A.15)

R10
ij = Rij(g

6) − 4(α2 + αβ)(∂A)2g6
ij + 4(β2 − α2 + 2αβ)∂iA∂jA

−(6α + 4β)∇i∂jA − βg6
ij�A . (A.16)
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B 10D Einstein and dilaton equation

The 10D action is (where we have put κ2
10=1/2)

∫ √
g

{

R − 1

2
(∂φ)2 −

∑

n

1

2n!
eanφF 2

n

}

+ Sloc , (B.1)

where Σn represents the sum over all the field strengths and the numbers an are given by

aRR
n =

5 − n

2
, aNS

3 = −1 . (B.2)

In IIA the RR field strengths are F0, F2, F4. When space-filling F4 flux is considered we

will define it using F6. In IIB the RR fields strengths are F1, F3, F5, where F5 is assumed

to be self-dual. The source action is

Sloc = −
∫

p+1
Tp

√

|g| + µp

∫

p+1
Cp+1 , Tp = ±µpe

(p−3)φ/4 . (B.3)

The Einstein equation is (for φ constant)

Rab =
∑

n

(

−n − 1

16n!
gabe

anφF 2
n +

1

2(n − 1)!
eanφ(Fn)2ab

)

+
1

2

(

T loc
ab − 1

8
gabT

loc

)

(B.4)

where the local stress tensor is given by

T loc
µν = −Tp gµν δ(Σ) , Tij = −Tp Πij δ(Σ) , (B.5)

throughout a, b are 10D indices, i, j are internal and µν are external. Πij is the projector

on the cycle wrapped by the source. In the smeared limit (which is considered when p > 3)

we have

δ(Σ) → 1 , Πij →
p − 3

6
gij . (B.6)

Taking the trace over the internal indices and integrating over the 6D space one finds

(Vp = Tp):

− VR =
∑

n

(n + 3)

4
Vn +

1

8
(15 − p)Vp . (B.7)

The 10D dilaton equation is

�φ = 0 =
∑

q

an

2n!
eanφF 2

n − p − 3

4
e(p−3)φ/4µp δ(Σ) , (B.8)

from which we have
∑

n

anVn +
p − 3

4
Vp = 0 . (B.9)

From the expression for the effective potential we find:

∂ρV = 0 : −VR − 3VH +
∑

q

(3 − q)Vq +
(p − 6)

2
Vp = 0 , (B.10)

∂τV = 0 : −2VR − 2VH − 4
∑

q

Vq − 3Vp = 0 . (B.11)
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where q runs over the RR field strengths. We notice that (B.7) can be found from summing

2/3 times the first equation with the second equation. Equation (B.9) can be obtained from

summing −2 times the first equation with the second equation.

The trace of the Einstein equation over the external indices just sets the value of the

cosmological constant. This can best be seen using the ordinary Einstein equation

Gµν =
∑

n

1

n!
eanφ

(

n (F 2
n)µν − 1

2
gµνF 2

n

)

+
1

2
T local

µν . (B.12)

When we take indices in the 4D spacetime we have13 (F 2
n)µν = 0. When we take the trace

over the 4D indices and remember that using R10 = R4 + R6 and R4 = 2V we recover the

definition of V

V = VR +
∑

n

Vn + Vp . (B.13)

C IIA SUGRA

The form equations of motion are

d(⋆e3φ/2F2) + eφ/2 ⋆ F4 ∧ H = 0 , (C.1)

d(⋆eφ/2F4) − F4 ∧ H = 0 , (C.2)

d(⋆e−φH) + eφ/2 ⋆ F4 ∧ F2 −
1

2
F4 ∧ F4 + F0e

3φ/2 ⋆ F2 = 0 , (C.3)

d ⋆ dφ− 1

4
eφ/2 ⋆ F4∧F4+

1

2
e−φ ⋆ H∧H− 3

4
e3φ/2 ⋆ F2∧F2−

5

4
e5φ/2 ⋆ F0∧F0 = 0 , (C.4)

where F0 is the Romans’ mass. The Bianchi identities read

dH3 = 0 , dF2 = F0H , dF4 = F2 ∧ H3 . (C.5)

The Einstein equation is given by

0 = RMN − 1

2
∂Mφ∂Nφ − 1

12
eφ/2FMPQRF PQR

N +
1

128
eφ/2gMNF 2

4 − 1

4
e−φHMPQH PQ

N

+
1

48
e−φgMNH2 − 1

2
e3φ/2FMP F P

N +
1

32
e3φ/2gMNF 2

2 − 1

16
gMNe5φ/2F 2

0 . (C.6)

D SU(3)-structure equations

Fluxes in IIA SUGRA lead to SU(3)-structures as can be derived from the existence cri-

terium of a spinor on the internal manifold. Out of the spinor bilinears one can define a

real two form J and an imaginary self-dual three form Ω [24]. These forms satisfy many

13in IIA with space filling F4 we replace the space-filling component by F6. In IIB with non-zero F5 this

term is non-zero but if one defines V5 with an extra factor of 1/4 the expressions match.
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relations and we list those that are not presented in the main text and which are necessary

for the computations presented in this paper:

⋆6Ω = −iΩ , ⋆6J =
1

2
J ∧ J , (D.1)

Ω ∧ Ω∗ =
4i

3
J ∧ J ∧ J , J ∧ J ∧ J = 6ǫ6 , (D.2)

Ω ∧ J = 0 , W2 ∧ J ∧ J = 0 , (D.3)

W2 ∧ Ω = 0 , ⋆6W2 = −J ∧ W2 , (D.4)

JmnW mn
2 = 0 , J n

m J q
p (W2)nq = (W2)mp , (D.5)

(ΩR)2ab = (ΩI)
2
ab = 4gab , J2

ab = gab . (D.6)
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